Doma-artek.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Определение числа свай в фундаменте

Расстояние между сваями в винтовом фундаменте

Как определить минимальное расстояние между буронабивными опорами при использовании в строительстве винтовых свай? Есть несколько разноплановых факторов, которые стоит учесть при расчете — приведем их в статье. А так же расскажем о самой формуле, по которой можно рассчитать расстояние и количество свай на нужный вам объект.

Расчет расстояния между сваями

Чтобы определить расстояние между сваями свайного фундамента, надо знать две величины: необходимое количество свай и размеры здания в плане.

Алгоритм расчета количества опор примерно одинаков для всех их видов, потому достаточно рассмотреть один вариант – например, буронабивные сваи.

Исходными данными для расчета являются:

  • анализ грунтов в зоне строительства;
  • максимальная нагрузка будущего дома на грунт;
  • площадь дома.

Анализ грунтов

Определить состав грунта на участке можно самостоятельно (если планируется возведение легкой постройки). Для этого на месте будущего фундамента надо выкопать несколько ям глубиной примерно 2 метра.

В процессе рытья «скважин» вы увидите, какой тип грунта вам будет попадаться, и на какой глубине находится плотный слой (например, твердая глина).

Этот параметр вам понадобится для расчета длины сваи.

Собираем нагрузки

Общая нагрузка на грунт определяется как сумма весов всех строительных материалов, которые предполагается использовать при строительстве, снеговой и ветровой нагрузки.

Две последние величины — нормативные.

Они зависят от региона строительства и определяются по таблицам действующих в России СНиПов.

Определяем необходимое количество свай

Для определения необходимого количества опор надо выполнить следующие действия:

  • рассчитать площадь подошвы одной сваи;
  • полученный результат умножить на сопротивление (4);
  • общую нагрузку поделить на произведение площади подошвы и сопротивления.

Получив число опор, необходимо произвести корректировку нагрузки: ведь и сами сваи давят на грунт. Вес буронабивной сваи считается без учета ее расширения.

Умножив вес одного элемента на их общее количество, получим дополнительную нагрузку на грунт.

Шаг установки свай

Как определить расстояние между сваями фундамента, зная их количество и габаритные размеры здания?

Кажется, нет ничего проще: расчет расстояния между сваями под фундамент заключается в делении периметра постройки на количество опор.

Но и здесь есть некоторые нюансы – существуют минимально и максимально допустимые расстояния между опорами:

  • минимальное расстояние между буронабивными сваями фундамента по осям не должно быть менее трех диаметров опоры;
  • максимальное расстояние между сваями фундамента – от 5 до 6 диаметров сваи.

Из вышеизложенного правила есть несколько исключений:

  • при строительстве на песчаных грунтах минимально допустимое расстояние между бетонными сваями фундамента составляет 4 диаметра. При уменьшении шага возникает переуплотнение грунта, что приводит к усложнению монтажных работ;
  • деревянные сваи устанавливаются с минимальным шагом 70 см независимо от их диаметра;
  • минимально допустимый шаг для железобетонных опор составляет 90 см.

В зависимости от типа фундамента сваи могут размещаться рядным способом или в шахматном порядке. Первый способ применяется в свайно-ленточном фундаменте, второй — в свайно-ростверковом.

Расстояние между сваями свайно-ростверкового фундамента не должно превышать шести диаметров столба. В противном случае опора будет подвергаться воздействию повышенной нагрузки и работать как одиночная. Это приведет в конечном итоге к разрушению ростверка и даже обрушению постройки.

Оптимальным расстоянием между сваями свайно-ленточного фундамента считается 1,5-2 метра.

Максимально допустимый шаг зависит от размещения опор:

  • в один ряд – 1,33 м;
  • в два ряда – 2,67 м.

Расчет свайных фундаментов — Стр 5

γc– коэффициентусловийработысваиравенγc = 1,0;

γcr – коэффициент условий работы для сваи с уширением, бетонируемым подводным способом, равенγcr= 0,9;

R– расчетное сопротивление под нижним концом сваи принимаем в глинистых грунтахпо табл.6 приложения 1, приh=10 миIL=0,5 R=700 кПа;

Рис. 2.11 кпримеру 2.6

A– площадь опирания приdу= 1,5 м, A= 3,14·1,52 /4 = 1,77 м2;

u – периметр стволасваиприd= 0,8 м, u= 2·π·r= 2·3,14·0,4= 2,51 м;

γcf – коэфициентусловийработыгрунтапобоковойповерхности свай, принимаем: для суглинка– γcf = 0,7;

вышеWL – γcf = 0,7; ниже WL – γcf = 0,6.

Для определения сопротивления грунтапобоковойповерхностиразбиваем стволсваи подлинена слои(в пределаходнородногослоя грунта) мощностью2 м(Рис. 2.11).

приz1=2,2 м, IL=0,7 , f1=7,2 кПа; приz2=4,1 м, IL=0,7 , f2=9,1 кПа;

приz3=5,75м, IL=0,5 , f3=24,7кПа;

приz4=7,5 м, IL=0,5 , f4=25,7кПа.

Несущая способность сваи

Fd= 1[0,9·700·1,77+2,51·(0,7·7,2·2+0,7·9,1·1,8+ +0,7·24,7·1,5+0,6·25,7·2)]= 1311,98 кН.

Расчетная нагрузка, допускаемая на сваю

N ≤ Fd / γk = 1311,98 /1,4 = 937,1 кН.

2.2.7.4 Определениенесущейспособностисвайпорезультатам полевыхиспытаний.

Несущая способность сваи, полученная расчетом, часто оказывается ниже

фактической, найденной по испытаниям. Данное обстоятельство объясняется тем, что в расчетахиспользуются осредненныетабличныезначения, чтоявляется приближенным.

Для определения истинной (фактической) несущей способности сваи рекомендуется проводить испытания свай непосредственнона площадкестроительства.

В этом случае несущая способность сваи определяется по результатам полевых

испытанийдинамической илистатическойнагрузкой, атакжестатическогозондирования. Динамический способ заключается в нахождении несущей способности сваи по

величинеотказапризабивкееенаглубину, близкуюк проектной.

В формулу для расчета несущей способности входят параметры оборудования, используемого для погружения испытываемой сваи, – энергия падающего молота, вес

наголовника и др. Грунт характеризуется только величиной отказа. Чтобы найти величину предельной нагрузки на сваю, рассчитанную по результатам динамических испытаний, ее

Статический метод испытания сваи заключается в том, что к забитой на заданную глубину свае ступенями прикладывается нагрузка, чаще всего создаваемая домкратом, и выжидается стабилизация осадки при данной ступени нагрузки, после чего прикладывается

следующая ступень нагрузки. Ступени составляют обычно

Исходные данные

Перед началом выполнения расчетов необходимо выбрать вариант расположения свай под ростверком дома или хозяйственной постройки. Он может быть:

  • Шахматным. В этом случае сваи для фундамента устанавливают под углами обвязки, а расстояние замеряют по диагонали между соседними элементами.
  • Рядное. При таком распределении опоры устанавливают в один ряд, располагая их параллельно относительно боковых граней ростверка.
Читать еще:  Как зашить цоколь дома на винтовых сваях?

Пример конструкции расположения опор

Каким должно быть расстояние между винтовыми сваями? В процессе проведения расчетов следует принимать во внимание:

  • форму основания дома;
  • характеристики почвы;
  • величину нагрузки, действующей на фундамент и ее особенности.

Кроме того, необходимо учитывать прочность опор и ростверка. Наиболее сложным при планировании строительства частных домов является изучение параметров грунта. Причем требуется выяснить не его тип и другие параметры на поверхности, а несущие способности на глубине расположения опор для фундамента после вкручивания. Для этого через толщу грунта прокладывают шурф глубиной до 2 м.

Для упрощения расчетов после определения нагрузки и количества свай можно предусмотреть примерно 30 % запас прочности, увеличив полученные данные на эту величину. Такой прием позволит компенсировать слишком большую нагрузку на фундамент из-за аномальных снегопадов, неоднородность почвы и другие факторы.

Анализ состава почвы можно проводить во время пробного вкручивания, которое необходимо для оценки расстояния до плотных слоев и подбора нужной длины свай. Плотность грунта определают по справочнику.

Указания по расчету свайных фундаментов

Основные указании

Расчет свайных фундаментов и их оснований должен быть выполнен по предельным состояниям:
а) первой группы:
— по прочности материала сван и свайных ростверков;
— по несущей способности грунта основания свай;
— но несущей способности оснований свайных фундаментов, если на них передаются значительные горизонтальные нагрузки (подпорные стены, фундаменты распорных конструкций и др.) или если основания ограничены откосами или сложены крутопадающими слоями фунта и т.п.;
б) второй группы
— по осадкам оснований свай и свайных фундаментов от вертикальных на-грузок;
— по перемещениям свай (горизонтальным up , углам поворота головы свай ψp) совместно с грунтом оснований от действия горизонтальных нагрузок и моментов.
— по образованию или раскрытию трещин в элементах железобетонных конструкций свайных фундаментов.
Расчет свай, свайных фундаментов и их оснований по несущей способности необходимо выполнять на основные и особые сочетания нагрузок, по деформациям — на основные сочетания.
Все расчеты свай, свайных фундаментов и их оснований следует выполнять с использованием расчетных значений характеристик материалов и фунтов.
При наличии результатов полевых исследований несущую способность грунта основания свай следует определять с учетом данных статического зондирования грунтов, испытаний грунтов эталонными сваями или по данным динамических испытаний свай. В случае проведения испытаний свай статической нагрузкой несущую способность грунта основания сваи следует принимать по результатам этих испытаний

Расчет сван по прочности материала

При расчете свай всех видов по прочности материала сваю следует рассматривать как стержень, жестко защемленный в фунте в сечении, расположенном от подошвы ростверка на расстоянии l1 определяемом по формуле:

где l— длина участка сваи от подошвы высокого ростверка до уровня планировки грунта, м;
ag — коэффициент деформации. 1/м.

Если для буровых свай и свай — оболочек, заглубленных сквозь толщу нескального грунта и заделанных в скальный грунт, отношение 2/ag , то следует принимать

(где h — глубина погружения сваи или сваи — оболочки, отсчитываемая от ее нижнего конца до уровня планировки грунта при высоком ростверке, подошва которого расположена над грунтом, и до подошвы ростверка при низком ростверке, подошва которого опирается или заглублена в нескальные грунты, за исключением сильносжимаемых, м).
При расчете по прочности материала буро-инъекционных свай, прорезающих сильносжимаемые грунты с модулем деформации Е = 5 МПа и менее, расчетную длину свай на продольный изгиб ld , в зависимости от диаметра свай d следует принимать равной:

при Е ≤ 2 МПа ld = 25d
при Е = 2 — 5 МПа ld = 15d.

В случае если ld превышает толщину слоя сильносжимаемого грунта расчетную длину следует принимать равной 2hg.
Расчеты конструкций свай всех видов следует производить на воздействие нагрузок, передаваемых на них от здания или сооружения, а забивных свай, кроме того, на усилия, возникающие в них от собственного веса при изготовлении, складировании, транспортировании свай, а также при подъеме их на копер за одну точку, удаленную от головы свай на 0,3l (где l -длина сваи).
Усилие в свае (как балке) от воздействия собственного веса следует определять с учетом коэффициента динамичности, равного:
1,5 — при расчете по прочности;
1,25 — при расчете по образованию и раскрытию трещин.
В этих случаях коэффициент надежности по нагрузке к собственному весу сваи принимается равным единице.
Расчетная нагрузка, допускаемая на железобетонную сваю по материалу, определяется по формуле:

где ϒb3 — коэффициент условий работы бетона, принимаемый ϒb3= 0,85 для свай, изготавливаемых на месте строительства;
ϒcb — коэффициент, учитывающий влияние способа производства свайных работ;
Rb — расчетное сопротивление бетона сжатию;
Ab — площадь сечения сваи нетто,
Rgc — расчетное сопротивление арматуры сжатию;
Ag — площадь сечения арматуры.
Пример 1.

Определение несущей способности сваи по материалу
Определить несущую способность буронабивной сваи диаметром d = 0,2 м по материалу. Свая выполняется в глинистом грунте без крепления стенок и отсутствии грунтовых вод. Материал сваи: бетон В20. Свая армирована 4 стержнями d12 A400.
Решение:
Площадь сечения сваи нетто:
Ab = πd 2 /4 = 3,14 * 0,22 2 /4 = 0,0314 м 2 .
Площадь сечения 4d12 A400: Ag = 452 мм 2 = 452 * 10 -6 м 2 .
Расчетное сопротивление бетона сжатию: Rb = 11,5 МПа.
Расчетное сопротивление арматуры А400 сжатию:
Rgc = 355 МПа.
Коэффициент условии работы бетона: ϒb3 = 0,85.
Коэффициент, учитывающий влияние способа производства свайных работ: ϒcb = 1,0.
Расчетная нагрузка, допускаемая на .железобетонную сваю но материалу:

N = 0,85* 1,0 * 11,5 * 0,0314 + 355 * 452 * 10 -6 = 0,467 МПа = 467 кН.

Расчет свай по несущей способности грунта

Одиночную сваю в составе фундамента и вне его по несущей способности грунтов основания следует рассчитывать исходя из условия:

Читать еще:  Как рассчитать количество свай для каркасного дома?

где N — расчетная нагрузка, передаваемая на сваю (продольное усилие, возникающее в ней от расчетных нагрузок, действующих на фундамент при наиболее невыгодном их сочетании);
Fd — расчетная несущая способность грунта основания одиночной сваи, называемая в дальнейшем несущей способностью сваи.
γk — коэффициент надежности по грунту.

При расчете свай всех видов как на вдавливающие, так и на выдергивающие нагрузки продольное усилие, возникающее в свае от расчетной нагрузки N, следует определять с учетом собственного веса сваи, принимаемого с коэффициентом надежности ио нагрузке, увеличивающим расчетное усилие.
Если расчет свайных фундаментов производится с учетом ветровых и крановых нагрузок, то воспринимаемую крайними сваями расчетную нагрузку допускается повышать на 20 % (кроме фундаментов опор линий электропередачи).
Если сваи фундамента опоры моста в направлении действия внешних нагрузок образуют один или несколько рядов, то при учете (совместном или раздельном) нагрузок от торможения, давления ветра, льда и навала судов, воспринимаемых наиболее нагруженной сваей, расчетную нагрузку допускается повышать на 10 % при четырех сваях в ряду и на 20 % при восьми сваях и более При промежуточном числе свай процент повышения расчетной нагрузки определяется интерполяцией.
Расчетную нагрузку на сваю N, кН. следует определять, рассматривая фундамент как рамную конструкцию, воспринимающую вертикальные и горизонтальные нагрузки и изгибающие моменты.
Для фундаментов с вертикальными сваями расчетную нагрузку на сваю допускается определять по формуле:

где Nd — расчетная сжимающая сила, кН;
Mx , My расчетные изгибающие моменты, кНм, относительно главных центральных осей x и y плана свай в плоскости подошвы ростверка;

n — число свай в фундаменте.
xi, yi — расстояния от главных осей до оси каждой сваи, м;

х , у — расстояния от главных осей до оси каждой сваи, для которой вычисляется расчетная нагрузка, м.

Рис. 1. Схема для определении нагрузки на сваю

Горизонтальную нагрузку, действующую на фундамент с вертикальными сваями одинакового поперечного сечения, допускается принимать равномерно распределенной между всеми сваями.
Сваи и свайные фундаменты следует рассчитывать по прочности материала и производить проверку устойчивости фундаментов при действии сил морозного пучения, если основание сложено пучинистыми грунтами.

Пример 2.

Определение нагрузок на сваи во внецентренно-нагруженном фундаменте

Необходимо определить нагрузки, приходящиеся на сваи (см. рис.2). Количество свай в фундаменте n = 6. Нагрузки, действующие на фундамент:

Программа предназначена для выполнения расчетов и проверок элементов оснований и фундаментов на соответствие требованиям СНиП 2.02.01-83*, СП 50-101-2004, СНиП 2.02.03-85 и СП 50-102-2003, СП 22.13330 и СП 24.13330, ДБН В.2.1-10:2009. Кроме того, в программе предусмотрена возможность получения справочных данных, наиболее часто используемых при проектировании оснований и фундаментов. Реализованные в программе расчетные и информационные функции объединены в группы по следующим разделам: Фундаменты, Сваи, Полевые испытания свай, Информация.

В разделе Фундаменты выполняются следующие операции: определение крена прямоугольного в плане фундамента от действующих на него нагрузок; расчет основания по деформациям прямоугольных в плане столбчатых и ленточных фундаментов, а также жестких плит; определение коэффициентов жесткости основания, состоящего из конечного числа слоев, каждый из которых является линейно-деформируемым и постоянным по толщине; вычисление предельного давления под подошвой фундамента (расчетного сопротивления грунта).

В раздел Сваи включено два информационных режима — Коэффициенты условий работы сваи и Номенклатура свай, а также следующие расчетные режимы: определение несущей способности сваи, работающей на вертикальную нагрузку; определение коэффициента запаса устойчивости основания, минимального и максимального изгибающего момента и поперечной силы в сечении сваи, а также ряда других характеристик сваи; определение осадки сваи, работающей на вертикальную нагрузку.

Раздел Полевые испытания свай включает расчет на определение несущей способности свай по результатам их динамических испытаний; определение несущей способности забивной (натурной) висячей сваи, работающей на сжимающую нагрузку, по результатам испытаний грунтов эталонной сваей; определение несущей способности забивной (натурной) висячей сваи, работающей на сжимающую нагрузку, по результатам испытаний грунтов сваей-зондом; определение несущей способности забивной (натурной) висячей сваи, работающей на сжимающую нагрузку, по результатам испытаний грунтов статическим зондированием.

Справочные режимы обеспечивают просмотр предельных значений относительной разности осадок, крена и средней или максимальной осадки для сооружений различного типа; дают информацию о: расчетных сопротивлениях грунтов различного вида, приведенную в нормативных документах; характеристиках грунтов, приведенную в СНиП, СП и ДБН; а также коэффициентах условий работы.

Соответствие СНиП подтверждено сертификатом Госстроя России.

Интерфейс

ЗАПРОС работает в операционной среде Windows. Организация пользовательского диалога и элементы управления полностью соответствуют этой среде.

Help (Справочная информация)

Программа снабжена подробной справочной информацией, которая включает описание пользовательского интерфейса и правил работы с программой.

Введение.

Цель данного курсового проекта – проектирование и расчет фундаментов для химического корпуса со стенами из стеновых панелей, внутренний каркас из сборных ж/б колонн с продольным расположением ригелей.

Размеры в плане 27х36 м.

Здание имеет подвал в осях В-Г. Отметка пола подвала – 3 м.

Отметка пола первого этажа 0.00 м на 0.15 м выше отметки спланированной поверхности земли.

Место строительства – поселок Кировский заданы отметки природного рельефа – 38,2м и уровня грунтовых вод 34,8м .

Также известны инженерно-геологические условия, физические характеристики грунтов и их гранулометрический состав.

В ходе разработки курсового проекта необходимо рассчитать два типа фундаментов: мелкого заложения и свайный.

Для фундаментов мелкого заложения проводятся расчеты: определение физико-механических свойств грунтов, оценка грунтовых условий строительной площадки, расчет размеров и выбор вариантов фундаментов, расчет оснований по деформациям, расчет осадки.

Для разработки свайных фундаментов: расчет размеров ростверков, определение осадки свайных фундаментов, подбор оборудования для погружения свай и расчетный отказ.

    ^

Читать еще:  Погреб в доме на винтовых сваях

Динамические испытания свай

Работы, связанные с сооружением свайного фундамента не обходятся без испытания имеющихся свай. Помимо статического испытания свай, производят также испытания свай динамической нагрузкой. По мере погружения сваи возрастает сопротивление грунта проникновению сваи. Внешне это проявляется в том, что с заглублением острия в грунт уменьшается отказ сваи, т. е. величина ее погружения от одного удара молотом. Динамические испытания свай основаны на связи между энергией удара молота при забивке сваи в грунт и несущей способностью сваи.

При пробной забивке динамические испытания свай позволяют назначить рациональную длину свай и проверить соответствие фактической и расчетной величин отказов свай. При забивке рабочих свай наблюдения за изменениями отказов позволяют выявить несущие слои грунта, дать относительную оценку несущей способности забитых свай и выявить слабые участки свайного поля. Во время проведения динамического испытания свай составляются графики, которые описывают изменения состояния сваи в зависимости от приложенных к ней нагрузок.

Динамические испытание свай имеют некоторые преимущества перед статическим испытанием свай — они более мобильны, не требует высоких затрат, применяется к любым видам свай независимо от их несущей способности. Но при этом динамический метод испытаний свай может дать завышенную величину несущей способности свай. Это возможно, если свая при забивке прорезает толщу относительно плотных грунтов и входит острием в более слабый слой, обладающий большей сжимаемостью. Необходимо отметить, что в этом случае и статический метод испытания свай может ввести в заблуждение. Дело в том, что в таких грунтовых условиях при длительном действии на сваю статической нагрузки, вследствие деформаций ползучести происходит перераспределение нагрузки и значительно повышается ее доля, приходящаяся на острие сваи, что вызывает перегрузку слабого грунта основания. Поэтому при многослойных напластованиях необходимо, чтобы острия свай входили в более прочный подстилающий слой грунта.

В глинистых грунтах (однородных в пределах фундамента здания) при забивке свай на одинаковую глубину величины отказов как в конце забивки, так и во времени, могут сильно отличаться для разных свай, что может натолкнуть на неправильное заключение о их весьма различной несущей способности. Однако в этом случае результаты динамических испытаний свай сравнивают с результатами статических испытаний, которые показывают одинаковый уровень сопротивляемости свай.

Динамический метод испытания свай непригоден также и при сооружении свайных фундаментов на сыпучих основаниях из песка, строительного мусора, бытовых свалках и т.п.

Технология проведения динамических испытаний свай

Как правило, динамические испытания свай проводятся трижды. Первоначально проводят динамические испытания имеющихся свай перед началом основных свайных работ и даже до начала работы над проектом свайного фундамента. Это делается с целью определить уровнень неоднородности грунта в месте будущего строительства.

Следующий этап динамических испытаний проводят в момент забивки основных свай в грунт — чтобы оценить их несущие качества и возможности, а также для определения несущих слоев в грунте и слабых участков в зоне, где забиваются сваи. По завершению свайных работ сваи проходят еще одно динамическое испытание для более достоверного определения несущих способностей свай после того как они «отдохнули». Длительность «отдыха» свай в связных глинистых грунтах приближается к шести суткам, а в песчаных грунтах составляет не менее трех суток со времени окончания забивки.

При забивке рабочих свай наблюдения за изменениями отказов позволяют выявить несущие слои грунта, дать относительную оценку несущей способности забитых свай и выявить слабые участки свайного поля. Контрольная добивка свай выявляет изменения несущей способности свай после «отдыха». Она должна выполняться тем же молотом, которым велась забивка свай. В глинистых грунтах ее следует производить короткими сериями ударов, чтобы вновь не нарушить структуру грунта

Динамические испытания свай проводят с помощью того же оборудования, которое применяется для проведения основных свайных работ. После всех испытаний получают величину отказа свай, равную степени погружения сваи в грунт после одного удара. Далее производятся необходимые расчеты для определения несущей способности забитой сваи. При этом точность полученных данных отказов полностью зависит от точности вычисления высоты молота и веса его ударной части, а также веса самой сваи и наголовника. Не следует также забывать и о точности замеров упругих перемещений сваи и грунтов после удара.

Для измерения отказа при динамических испытаниях свай в основном применяется нивелир. Точность фиксируемых упругих перемещений сваи и грунта нивелиром равна 1 мм. Во время забивки пробных свай и при контрольных испытаниях (приемка забитых свай) динамические испытания свай принято проводить лишь после «отдыха» свай. Условные обозначения:

Для правильного определения несущей способности сваи динамическим методом важное значение имеет достаточно точное измерение высоты падения молота. Для этого обычно пользуются рейкой с четкими делениями через 5 см, прикрепляемой к молоту или наголовнику сваи. Таким способом визуально можно определить высоту падения молота с требуемой точностью до 2 см.

Срок эксплуатации

Длительность эксплуатации свайного фундамента зависит от:

  1. правильного выбора вида свай и их качества;
  2. точности расчетов;
  3. соблюдения требований монтажа.

Расчетный срок службы для свайного фундамента на железобетонных сваях составляет 100 лет. На стальных сваях – около 70-ти. Здесь важную роль играет наличие и характер дополнительной обработки металла. Для фундамента из деревянных свай – зависит от породы древесины и условий эксплуатации.

Заключение

Несмотря на малую распространенность свайного фундамента в индивидуальном строительстве, он будет незаменим при необходимости выполнить строительство фундамента в короткие сроки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector