Doma-artek.ru

Стройка и ремонт
6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Грузовая площадь для сбора нагрузок на фундамент

Ф.3.10. Как определяется грузовая площадь при сборе нагрузок на фундамент?

Грузовая площадь определяется различно для жилых, общественных и производственных зданий.

На рис.Ф.3.10 показаны две грузовые площади для сбора нагрузок на ленточные фундаменты внутренней (Б) и внешней (А) стен жилого дома. Для внутренней несущей стены ширина грузовой площади принимается равной 100 см, а длина определяется половиной расстояния в чистоте между стенами в направлении длинной стороны плиты перекрытия. Из-за наличия оконных проемов в наружных стенах ширина грузовой площади принимается равной расстоянию между осями оконных проемов вдоль здания, а длина половине расстояния в чистоте между стенамипоперек здания.

В отличие от жилых зданий с несущими наружными и внутренними стенами в промышленных зданиях несущий каркас выполняется из колонн, ригелей и плит перекрытия. Поэтому при сборе нагрузок на отдельно стоящие фундаменты под колонны ширина и длина грузовой площади определяются половиной расстояния между соседними осями здания.

Рис.Ф.3.10. Схема сбора нагрузок на фундаменты: а) схема для подсчета нагрузок от конструкций; б) схема для подсчета нагрузок на фундаменты: 1 — для внутренней стены; 2 — для наружной стены

Ф.4. ПРЕДЕЛЬНЫЕ СОСТОЯНИЯ

Пример выполнения вычислений

Удобнее всего сбор нагрузок на фундамент дома делать в табличной форме. Пример рассмотрен для следующих исходных данных:

  • дом двухэтажный, высота этажа 3 м с размерами в плане 6 на 6 метров;
  • фундамент ленточный железобетонный монолитный шириной 600 мм и высотой 2000 мм;
  • стены из кирпича полнотелого толщиной 510 мм;
  • перекрытия монолитные железобетонные толщиной 220 мм с цементно-песчаной стяжкой толщиной 30 мм;
  • кровля вальмовая (4 ската, значит, наружные стены по всем сторонам дома будут одинаковой высоты) с покрытием из металлической черепицы с уклоном 45 градусов;
  • одна внутренняя стена посередине дома из кирпича толщиной 250 мм;
  • общая длина гипсокартонных перегородок без утепления толщиной 80 мм 10 метров.
  • снеговой район строительства ll, нагрузка 120 кг/м2 кровли.

Далее рассмотрен пример расчета в табличной форме.

0,6 м * 2 м * (6 м * 4 + 6 м) = 36 м 3 — объем фундамента

6 м * 4 шт = 24 м — протяженность стен

24 м * 3 м = 72 м 2 -площадь в пределах одного этажа

6 м * 2 шт * 3 м = 36 м 2 площадь стен на протяжении двух этажей

6 м * 6 м = 36 м 2 — площадь перекрытий

36 м 2 *625 кг/м 2 = 22500 кг = 22, 5 тонн — масса одного перекрытия

10 м * 2,7 м (здесь берется не высота этажа, а высота помещения) = 27 м 2 — площадь

(6 м * 6 м)/cos 45ᵒ (угла наклона кровли) = (6 * 6)/0,7 = 51,5 м 2 — площадь кровли

Чтобы понять пример, эту таблицу нужно смотреть совместно с той, в которой приведены массы конструкций.

Далее необходимо сложить все полученные значения. Итого нагрузка для данного примера на фундамент с учетом собственного веса составляет 409,7 тонн. Чтобы найти нагрузку на один погонный метр ленты, необходимо разделить полученное значение на протяженность фундамента (посчитано в первой строке таблицы в скобках): 409,7 тонн /30 м = 13,66 т/м.п. Это значение берут для расчета.

При нахождении массы дома важно выполнять действия внимательно. Лучше всего уделить этому этапу проектирования достаточное количество времени. Если совершить ошибку в этой части расчетов, потом возможно придется переделывать весь расчет по несущей способности, а это дополнительные затраты времени и сил. По завершении сбора нагрузок рекомендуется перепроверить его, для исключения опечаток и неточностей.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Расчёт несущей способности грунта

Для расчёта несущей способности грунта понадобятся физико-механические характеристики инженерно-геологических элементов (ИГЭ), формирующих грунтовый массив участка строительства. Эти данные берутся из отчета об инженерно-геологических изысканиях. Оплата такого отчёта зачастую окупается сторицей, особенно это касается неблагоприятных грунтовых условий.

Среднее давление под подошвой фундамента не должно превышать расчётное сопротивление основания, определяемого по формуле:

Формула определения расчетного сопротивления грунта основания.

Для этой формулы существует ряд ограничений по глубине заложения фундаментов, их размеров и т.д. Более подробная информация изложена в разделе 5 СП 22.13330.2011. Ещё раз подчеркнем, что для применения данной расчётной методики необходим отчет об инженерно-геологических изысканиях.

Читать еще:  Можно ли делать фундамент поздней осенью?

В остальных случаях с некоторой степенью приближенности можно воспользоваться усредненными значениями в зависимости от типов ИГЭ (супеси, суглинки, глины и т.п.), приведенными в СП 22.133330.2011:

Расчетные сопротивления крупнообломочных грунтов.

Расчетные сопротивления песчаных грунтов.

Расчетные сопротивления глинистых грунтов.

Расчетные сопротивления суглинистых грунтов.

Расчетные сопротивления заторфованных песков.

Расчетные сопротивления элювиальных крупнообломочных грунтов.

Расчетные сопротивления элювиальных песков.

Расчетные сопротивления элювиальных глинистых грунтов.

Расчетные сопротивления насыпных грунтов.

В рамках примера зададимся суглинистым грунтом с коэффициентом пористости 0,7 при значении числа пластичности 0,5 – при интерполяции это даст значение R=215кПа или 2,15кг/см2. Самостоятельно определить пористость и число пластичности очень сложно, для приблизительной оценки стоит оплатить взятие хотя бы одного образца грунта со дна траншеи специалистом лаборатории, выполняющей изыскания. В общем и целом для суглинистых грунтов (самый распространенный тип) чем выше влажность, тем выше значение числа пластичности. Чем легче грунт уплотняется, тем выше коэффициент пористости.

Анализ грунта

Лучше заказать исследование специалистам, которые бурят скважины на разной глубине и берут образцы для лабораторного исследования физических и механических свойств. На поверхности находится слой плодородной почвы, затем располагается несущий грунт, на который опирается фундамент.

Основные виды грунтов:

  • скальные;
  • мерзлые с вкраплениями льда;
  • дисперсные;
  • техногенные с насыпными и намывными участками.

Самостоятельно можно определить категорию грунта, прокопав скважины под углами будущего дома. Нужно помнить, что перерасход материалов вызывает лишние траты, но слабое основание становится причиной разрушения строения.

Горсть грунта смачивают водой и скатывают в жгут, диаметр которого около 1 см. Полученный образец скатывают в кольцо.

  • жгут распадается — песок;
  • скатывается, но достаточно хрупкий — супесь;
  • шнур получается, но в кольцо не складывается — легкий суглинок;
  • сгибается в круг, но на поверхности есть трещины — тяжелый суглинок, приближенный к глине;
  • липкий жгут при сгибании не образует трещин — глина.

Уровень грунтовой жидкости определяют по отметкам воды на стенках подвала у соседей. Глубина промерзания берется из справочника для области строительства.

Разновидность нагрузок

Конструкция фундамента находится под влиянием постоянных и временных нагрузок, значение которых зависит от многих факторов: климатического района застройки, видов грунтов основания, строительных материалов для основных конструкций стен, крыши, перекрытий.

Постоянные нагрузки

К постоянным видам нагрузок относятся:

  • Собственный вес конструкций здания.
  • Расчетные показатели давления грунтов на боковую поверхность ленточного фундамента.
  • Давление от грунтовых вод.

При выполнении расчетов усилия от постоянного веса считаются самым серьезным видом нагрузки.

Временная нагрузка

Конструкция здания может подвергаться периодическим временным нагрузкам, таким как:

  • Снеговая, показатель которой зависит от толщины снежного покрова в каждом конкретном регионе.
  • Ветровая, определяемая по таблице усредненных показателей розы ветров в данной местности.
  • Сейсмическая (для районов с повышенной сейсмичностью).
  • От веса мебели в помещениях и перемещения людей.

Показатели временных нагрузок можно найти в ДБН В.1.2-2 2006 «Нагрузки и воздействия» в разделе 6 по таблице 6.2.

3. Описание и порядок расчета нагрузки на фундамент

При сборе нагрузок на фундамент (общем и обязательном этапе расчет вне зависимости от типа основания) последовательно определяются и суммируются:

  • Постоянная нагрузка от стен – в простейшем приближении высота стен (включая внутренние) умножается на их длину и толщину. Далее полученная величина умножается на удельный вес основного материала, взятого из таблиц или технического паспорта. Минимальную нагрузку (от 300 кгс/м3) имеют каркасные стены, низкую (≈600 кгс/м3) – газобетон или дерево, высокую (1200) – шлакоблок и пустотелая керамика, максимальную (1800) конструкции из полнотелого кирпича или камня. Размером окон при простых расчетах как правило пренебрегают, вес утеплителя или фасадных систем, наоборот, следует учесть.
  • Нагрузка от пола и перекрытий. В расчет принимаются любые опирающиеся на стены конструкции, включая полы первого этажа, перекрытия между этажами, жилой мансардой или чердаком. Их площадь обычно совпадает с размерами дома, для получения нагрузки объем перекрытий умножается на их удельный вес (100-200 кгс/м3 для деревянных разновидностей с разной плотностью, 200-300 – цокольные утепленные полы из дерева, 500 – стандартные ж/б конструкции).
  • Кровельная нагрузка, определяемая исходя из веса материала и типа конструкции крыши. Эту величину стоит рассчитывать с помощью онлайн-калькуляторов, определить точную площадь проекционных линий и длину опорных участков при сложной конфигурации кровли могут только специалисты. При отсутствии такой возможности площадь кровли просто умножают на удельных вес ее материала (20-30 кгс/м2 у всех кровель из облегченной стали, 40-50 – шифера, 30-50 – рубероида и мягкой кровли, 60-80 – керамической или композитной черепицы).
  • Снеговая нагрузка на крышу дома – усредненная табличная величина, выбираемая с учетом региона проживания и умножаемая на опорную площадь кровли. Последняя получается путем деления всей площади кровли на площадь опорных скатов. Проще всего снеговая нагрузка высчитывается для плоских кровель – вес снежного покрова на горизонтальной плоскости (от 80 до 560 кг/м2) просто умножается на их площадь.
  • Другие временные нагрузки (ветровая, сейсмическая, вес печей, мебели и проживающих людей). При упрощенном варианте эксплуатационная нагрузка на перекрытия в жилых этажах принимается равной 195 кг/м2.
Читать еще:  Подбетонка под фундамент СНИП

Ветровой нагрузкой при упрощенном общем сборе пренебрегают за исключением расчета домов с высокой парусностью (а именно – при расчете легких каркасников на высоких свайных фундаментах в регионах с сильными ветрами).

Для упрощения расчета фундамента для дома и исключения ошибок при сборе все нагрузки от несущих и внутренних конструкций стоит просчитывать отдельно.

Дальнейшие действия зависят от типа фундамента. При необходимости определения минимальной площади основания (актуальной при заложении ленты или расчете сечения опор с ростверком) стоит использовать формулу:

  • Где S – оптимальная площадь основания, м2
  • F – общая нагрузка на основание (к весу дома и дополнительным нагрузкам добавляется вес самого фундамента).
  • Yн – коэффициент надежности, 1,1-1,3
  • Yc- коэффициент условий работы, зависящий от типа грунта, длины и жесткости здания.

Для определения веса фундамента нужно знать удельный вес его материала основы (2500 кг/м3 для любых армированных конструкций из бетона), глубину заложения (выбирается исходя из условий на участке), высоту поднятия над нулевой отметкой (в пределах 10-30 см) и ширину (не менее толщины стен с учетом толщины фасадных систем с утеплителем или без него).

Пример 1.4. Сбор нагрузок на колонну

Требуется собрать нагрузки на колонну первого этажа жилого дома. Колонна расположена на пересечении осей «2» и «Б» (см. рис.1). Размеры сечения колонны: h=0,4 м, b=0,4 м.

Разрез здания представлен на рис. 1.

Решение

Собственный вес перекрытий и покрытия

Данные о собственном весе перекрытия примем из примера №1:

Нормативное и расчетное значения нагрузки от собственного веса покрытия примем из примера №2:

При расчете нагрузки на колонну от перекрытия или покрытия ее значение умножается на грузовую площадь. Для колонны среднего ряда (как в нашем случае) грузовая площадь равна

А = 6,6 х 7,2 = 47,52 м 2 .

Рассматриваемая нами колонна воспринимает нагрузки от трех перекрытий (на отм. 3,3; 6,6 и 9,9) и покрытия на отм. 13,2. Тогда нагрузка от трех перекрытий составит:

N1 н = qпер н Аn = 5,89 х 47,52 х 3 = 839,68кН;
N1 р = qпер р Аn = 6,63 х 47,52 х 3 = 945,17кН.

Нагрузка от покрытия:
N2 н = qпокр н А = 7,0 х 47,52 = 332,6кН;
N2 р = qпокр р А = 8,1 х 47,52 = 385,0кН.
Собственный вес колонны
Собственный вес колонны равен:
N3 н = 25hbHγn = 25 х 0,4 х 0,4 х 13,2 х 0,95 = 50,2кН,
где 25кН/м 3 — объемный вес железобетона;
Н = 13,2м — высота колонны.
Коэффициент надежности по нагрузке γt = 1,1, тогда расчетное значение составит:
N3 р = N3 н γt = 50,2 х 1,1 = 55,2кН.

Полезная нагрузка от перекрытий
Значения равномерно распределенных временных нагрузок на перекрытие примем по табл.

кратковременная ν1 н = 1,5 кН/м 2 ; ν1 р = 1,95 кН/м 2 ;

длительная р1 н = 0,53 кН/м 2 ; р1 р = 0,69 кН/м 2 .

При расчете колонн, воспринимающих нагрузки от двух и более перекрытий, нормативные значения полезных нагрузок следует умножать на коэффициент сочетаний φ3 или φ4,

где φ1 — коэффициент, вычисленный в примере №3;
n — число перекрытий.
Тогда кратковременная нагрузка на колонну от полезной нагрузки трех перекрытий с учетом коэффициента φ3:

N1,р н = р1 н Аnφ3 = 0,53 х 47,52 х 3 х 0,55 = 41,56кН;
N1,р р = р1 р Аnφ3 = 0,69 х 0,52 х 3 х 0,55 = 54,1кН.

Снеговая нагрузка от покрытия

Значения снеговой нагрузки на покрытие примем.
Полезная нагрузка:
кратковременная ν2 н ; ν2 р ;
длительная р2 н = 0,88 кН/м 2 ; р2 р = 1,23 кН/м 2 .
В примере №2 мы рассматривали вариант. когда на покрытии могут находится люди. В примере №4 для простоты будем считать, что покрытие не эксплуатируемое, и единственным источником временной нагрузки является снег.
Тогда кратковременная нагрузка на колонну от снега составит:
N2,ν н = ν2 н А = 1,26 х 47,52 = 59,88кН;
N2,ν р = ν2 р А = 1,76 х 47,52 = 83,64кН.
То же длительная:
N2,р н = р2 н А = 0,88 х 47,52 = 41,82кН;
N2,р р = р2 р А = 1,23 х 47,52 = 58,45кН.

Обратите внимание, что при подсчете нагрузки от снега коэффициент φ3 отсутствует в формулах, поскольку, еще раз напомним, понижающие коэффициенты φ1, φ2, φ3 и φ4 используются только для полезных нагрузок. Об этом не стоит забывать.

Читать еще:  Чем обшить свайный фундамент дома снаружи?

Нагрузка от перегородок
Примем значения нагрузки от перегородок:
р3 н = 0,5 кН/м 2 ; р3 р = 0,65 кН/м 2 .
Нагрузка от перегородок классифицируется как длительная.
Нагрузка на колонну от перегородок с трех этажей составит:

N3,р н = р3 н Аn = 0,5 х 47,52 х 3 = 71,28кН;
N3,р р = р3 р Аn = 0,65 х 47,52 х 3 = 92,66кН.

Запишем все полученные данные в таблицу 1.

Таблица 1

Сбор нагрузок на колонну первого этажа

Вид нагрузки

Норм. кН

Коэф. γt

Расч. кН

Постоянная нагрузка

Перекрытия трех этажей

839,68

945,17

Покрытия

Собственный вес колонны

Всего:

1222,48

1385,37

Временная нагрузка

Полезная от трех перекрытий:

кратковременная N1, ν

117,61

длительная N1,р

кратковременная N2, ν

длительная N2,р

Перегородки от трех этажей

(длительная) N3,р

Рассмотрим возможные основные сочетания.

I сочетание: постоянная нагрузка (собственный вес конструкций) + полезная от трех перекрытий (кратковременная).

При учете основных сочетаний, включающих постоянные нагрузки и одну временную нагрузку (длительную или кратковременную), коэффициент ψ вводить не следует.

NI н = N н + N1,ν н = 1222,48 + 117,61 = 1340,09кН;
NI р = N р + N1,ν р = 1385,37 + 152,9 = 1538,27кН.

II сочетание: постоянная нагрузка (собственный вес конструкций) + полезная от трех перекрытий (кратковременная) + нагрузка от снега (кратковременная).

Для основных сочетаний коэффициент сочетаний длительных нагрузок Ψl принимается: для первой (по степени влияния) длительной нагрузки — 1,0, для остальных — 0,95. Коэффициент Ψt для кратковременных нагрузок принимается: для первой (по степени влияния) кратковременной нагрузки — 1,0, для второй — 0,9, для остальных — 0,7.
По степени влияния на первом месте стоит полезная кратковременная нагрузка. Для нее вводим коэф. Ψtl = 1,0. Для второй кратковременной нагрузки тогда Ψt2 = 0,9.

NII н = N н + N1,ν н Ψtl + N н Ψt2 = 1222,48 + 117,61 х 1,0 + 59,88 х 0,9 = 1393,98кН;
NII р = N р + N1,ν р Ψtl + N р Ψt2 = 1385,37 + 152,9 х 1,0 + 83,64 х 0,9 = 1613,55кН.

III сочетание: постоянная нагрузка (собственный вес конструкций) + полезная от трех покрытий (кратковременная) + нагрузка от снега (кратковременная) + нагрузка от перегородок (длительная).
Для кратковременных нагрузок оставляем те же коэф: Ψtl = 1,0; Ψt2 = 0,9. Длительная нагрузка в данном сочетании только одна, поэтому коэф. Ψt,l для нее не устанавливается.

NIII н = N н + N1,ν н Ψtl + N н Ψt2 + N н = 1222,48 + 117,61 х 1,0 + 59,88 х 0,9 + 71,28 = 1465,26кН;
NIII р = N р + N1,ν р Ψtl + N р Ψt2 + N р = 1385,37 + 152,9 х 1,0 + 83,64 х 0,9 + 92,66 = 1706,21кН.

IV сочетание: постоянная нагрузка (собственный вес конструкций) + полезная от трех перекрытий (длительная) + нагрузка от снега (длительная) + нагрузка от перегородок (длительная).
Поскольку в данном сочетании присутствуют три длительных нагрузки, то для них вводится следующие коэф. сочетаний ( по степени влияния): Ψl,1 = 1,0; Ψl,2 = Ψl,3 = 0,95;

NIV н = N н + N1,ν н Ψtl + N н Ψt2 + N н Ψl,3 = 1222,48 + 117,61 х 1,0 + 59,88 х 0,9 + 71,28 х 0,95 = 1371,49кН;
NIV р = N р + N1,ν р Ψtl + N р Ψt2 + N р Ψl,3 = 1385,37 + 152,9 х 1,0 + 83,64 х 0,9 + 92,66 х 0,95 = 1583,02кН.

Общий комментарий к примерам №1; №2; №3 и №4: в конце каждого примера приводятся расчеты нескольких основных сочетаний. Сделано это для того, чтобы наглядно показать правила применения коэффициентов сочетаний. В практической деятельности Вам понадобятся только те сочетания, которые дают неблагоприятные сочетания нагрузок или соответствующих им усилий. К примеру, для расчета подпорной стены по прочности нужно суммировать все нагрузки, действующие на элемент, с их максимальными значениями. А при проверке устойчивости подпорной стены против опрокидывания возможная временная нагрузка на бровке призмы обрушения игнорируется, поскольку она создает дополнительное удерживающее усилие для стены. Поэтому всегда сочетания различных нагрузок устанавливаются из анализа их реальных вариантов одновременного действия.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector