Doma-artek.ru

Стройка и ремонт
0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Расчетное сопротивление бетона осевому растяжению

Расчетное и нормативное сопротивление бетона

Любое изделие из бетона должно выдерживать существенные нагрузки и при этом не поддаваться разрушительному воздействию внешних факторов. Параметры конструкций, при создании которых используется бетон, определяются еще во время проектирования. Перед началом проведения работ специалисты устанавливают расчетное сопротивление бетона.

Строители утверждают, что бетонные конструкции делаются из неоднородного стройматериала. Прочность нескольких образцов, при изготовлении которых использовалась одна и та же смесь, может быть совершенно разной. Именно поэтому перед специалистами встает вопрос определения прочности при помощи расчетных данных. За счет этих значений определяется сопротивление бетона сжатию. Что собой представляют расчетные показатели, и каким образом можно их определить? Какие дополнительные параметры и характеристики важно учитывать при проведении строительных работ?

Что такое расчетное сопротивление?

Расчетное сопротивление бетонной смеси – характеристика отражающая свойство материала противостоять внешним механическим нагрузкам. Его применяют при проектировании зданий и сооружений. Данный показатель получают из нормативных значений противодействия конкретной марки раствора делением на специальный коэффициент.

Этот коэффициент, применяемый для вычисления расчетного сопротивления бетона на сжатие обозначается γb и может принимать значения:

  • 1,3 – для максимальных возможных величин по несущей способности;
  • 1 – для максимальных значений по пригодности к эксплуатации.

Коэффициенты надежности материала при механическом растяжении обозначаются γbt, они могут быть равны:

  • 1,5 – для максимальных показателей несущей способности во время определения класса на сжатие;
  • 1,3 – для максимальных значений несущей способности на осевое растяжение;
  • 1 – для максимальных величин по пригодности к эксплуатации.

Классы бетонов обозначаются от В10 до В60, значения их нормативного противодействия приводятся в специальных таблицах.

Как получить расчетное сопротивление?

Для получения расчетного сопротивления бетона по осевому сжатию определяется класс материала, из таблицы берутся его нормативные данные и производится вычисление по формуле:

где Rb – расчетные данные на осевое сжатие, множитель Rbn – нормативные , γb – коэффициент.

Аналогично рассчитывают расчетное сопротивление бетона осевому растяжению:

где Rbt – расчетные значения на осевое растяжение, множитель Rbtn – нормативные показатели на растяжение, γbt – коэффициент для растяжения.

Учитывая условия, в которых будут эксплуатироваться бетонные конструкции, вводятся и другие коэффициенты γbi, учитывающие эти особенности:

  • для непродолжительных статических нагрузок 1;
  • для длительных статических нагрузок 0,9;
  • элементы, заливаемые вертикально 0,9;
  • коэффициенты, отражающие климатические особенности, назначение сооружения, площадь сечения указываются в документации отдельно.

Нормативное сопротивление

  1. Параметр отражает показатель материала по сжатию (сжатие бетонной призмы по оси при испытаниях) Rbn и Rbtn по растяжению;
  2. Значения для максимально нагруженных состояний 1-го состава Rb, Rbt и 2-го состава Rb,ser, Rbt,ser вычисляются методом деления этих параметров согласно ГОСТ на прикрепленные коэффициенты надежности – соответственно gbc и gbt;
  3. Значение по ГОСТ Rbn, зависящие от класса по прочности на сжатие;
  4. Установленное значение Rbtn при неконтролируемой прочности материала определяется по классу прочности, и воспринимается как обеспеченная прочность при растяжении;
  5. Согласно п.2 параметры 1-го типа Rb и Rbt могут изменяться. Для этого Rb и Rbt умножаются на параметр gbi;
  6. Параметры 2-го типа Rb,ser и Rbt,ser зависят от показателя gbi, и при нормальной нагруженности материала в 1,0. Для некоторых легких бетонов используются и другие показатели Rb,ser и Rbt,ser по согласованию с проектировщиками;
  7. Первоначальный модуль упругости Eb определяется по таблице ниже. Если бетонный объект эксплуатируется в климатическом регионе IVА, и не обеспечен защитой от УФ излучения, то параметры Eb умножаются на 0,85.
Тип сопротивленияRb,n и Rbt,n согласно ГОСТ, и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55B 60
Сжатие по оси Rb,m и Rb,ser7,5111518,5022,025,5029323639,5043
Растяжение по оси Rbt,r и Rbt,ser0,85111,351,551,751,95292,252,452,2,75

Структура бетона

В таблице указано расчетное сопротивление бетона осевому сжатию по СП 52-101-2003

Тип сопротивленияСопротивление согласно ГОСТ Rb и Rbt,и Rb,ser и Rbt,ser (Мпа)
B 10B 15B 20B 25B 30B 35B 40B 45B 50B 55
Сжатие по оси Rb68,511,514,51719,5222527,530
Растяжение по оси Rbt0,560,750,91,0501,151,301,401,501,601,70

Сопротивление по ГОСТ или СП зависит от прочности испытываемых образцов (кубиковая нормативная прочность).

Rb и Rbt для осевых растяжений при определении класса бетона устанавливается с зависимостью от прочности согласно ГОСТ испытываемых образцов типов бетона с контролем приготовления раствора. Нормативная кубиковая и призменная прочность на сжатие и на растяжение имеют определенное соотношение, устанавливаемое при стандартных испытаниях бетонных образцов.

Читать еще:  Перевести марку бетона в класс

Требования к автоклавному бетону

Рассчитывая класс бетона по прочности на растяжение по осям, стандартные значения Rb и Rbt берутся как свойство класса, выраженное в цифрах, которые идут после символа «B». Определяющие свойства деформаций бетона — это:

  • Максимальные относительные деформации при сжатии-растяжении по осям: Ɛbo,n и Ɛbto,n;
  • Первоначальный модуль упругости Eb,n;

Дополнительные свойства деформаций бетона:

  • Первичный коэффициент поперечных деформаций «v»;
  • Сдвиг по модулю «G»;
  • Коэффициент температурных деформаций αbt;
  • Деформации, зависящие от свойств ползучести раствора Ɛсг;
  • Деформации, зависящие от усадки материала εshr.

Характеристики деформаций определяются, исходя из класса и марки, плотности и технологических показателей бетона. Механические показатели бетона для напряженного состояния по одной оси в общих случаях характеризуются диаграммой деформирования материала, отражающей зависимость напряжений Σb,nbt,n) и относительных продольных деформаций Εb,nbt,n) бетона в растянутом или сжатом состоянии при импульсном приложении нагрузки.

Виды деформаций

При расчетах прочности бетонных конструкций основные характеристики, влияющие на конечный результат – это окончательное и фактическое сопротивление бетона Rb и Rbt. Характеристики прочности, полученные в результате вычислений, рассчитываются как стандартные сопротивления материала Rb,m и Rb,ser, а также Rbt,r и Rbt,ser, поделенные на gbc и gbt и. Показания gbc и gbt зависят от типа бетона, просчитанных свойств материала, предельных состояний при различных нагрузка, но должны не выходить за следующие рамки:

Для коэффициента gbc:

  1. 1,3 — для максимальных и минимальных нагрузок 1-го состава бетона;
  2. 1,0 — для максимальных и минимальных нагрузок 2-го состава;

Для коэффициента gbt:

  1. 1,5 — для максимальных и минимальных нагрузок 1-го состава при определении класса на сжатие по осям;
  2. 1,3 – для максимальных и минимальных нагрузок 1-го состава при определении класса на растяжение по осям;
  3. 1,0 — для максимальных и минимальных нагрузок 2-го состава бетона.

Для максимальных и минимальных нагрузок 1-го и 2-го состава показатели деформаций материала берутся из их значений, указанных в ГОСТ и СНиП. Также при вычислении значений R свойства нагрузок, влияние атмосферных осадков, температуры, напряженности материала и конструкции из бетона корректируются коэффициентами условий эксплуатации конструкции γbi, и отражаются на расчетных деформационных и прочностных параметрах строительного материала.

Диаграммы деформаций конструкций из бетона вычерчиваются, опираясь на метод замены стандартных показателей на расчетные параметры.

Диаграммы деформаций

Характеристики прочности при двухосном или трехосном приложении напряжений определяются по типу и классу бетона, исходя из связи между максимальными и минимальными значениями напряже­ний, приложенных в 2-х или 3-х перпендикулярах. Деформирование бетонного объекта вычисляется по плоскому или объемному приложению напряжений. Если конструкция имеет дисперсно-армированное состояние, то для нее принимаются характеристики, как для обычных бетонных или ж/б сооружений.

При работе с фибробетоном его свойства определяются, исходя из физико-эксплуатационных характеристик смеси, также берется в расчет форма, габариты, геометрия и распределение фибр в составе, сцепление фибр с раствором. Определяющие характеристики прочности и возможности деформирования армирования — это стандартные параметры прочности и свойства деформа­ции.

Неупругие деформации

Основное определение прочности материала армирования при нагрузках на растя­жение-сжатие — это установленное ГОСТ сопротивление Rs,n, которое принимается равным показателю эксплуатационного предела текучести или такого же условного предела, который будет соответствовать окончательному удлинению или укорочению, принимаемому как 0,2%. Также ограничение Rs,n происходит по показателям, соответствующим деформирующим нагрузкам, которые равны максимальным показателям деформации бетона вокруг сжатой арматуры при укорочении.

Факторы прочности

Скорость химических процессов, протекающих в водных растворах, оказывает большое влияние на характеристики бетона. Причинами, способствующими увеличению прочности, можно считать следующие:

Долговечность и надёжность конструкций из бетона во многом зависит от качества проектирования. Необходимо учитывать все характеристики материалов, подбирать наиболее пригодные в существующих условиях и учитывать особенности работы материалов с разными видами нагрузок.

Материал хорошо работает на сжатие, а расчётное сопротивление растяжению у бетона на порядок хуже. Поэтому нужно избегать внецентренных нагрузок и изгибающих моментов.

Как получить расчетное сопротивление

Для обеспечения достаточной надежности бетонных конструкций, при выполнении расчетов, используют такие значения прочности бетонного материала, которые в большинстве случаев ниже фактических показателей в конструкциях. Эти значения называют расчетными, соответственно, они напрямую зависят от фактических или по-другому – нормативных значений.

Читать еще:  Как сделать штамп для бетона своими руками?

Нормативные характеристики

Еще совсем недавно (до 1984 г) единственной характеристикой прочности бетона была его марка (М). Этот параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с появлением СНиП 2.03.01 были также введены классы по прочности на сжатие.

По сути, класс является нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 или гарантированной доверительной вероятностью 95%, и риском 5 процентов. Надо сказать, что в данном случае брать среднюю крепость рискованно, так как имеется 50 процентов вероятности того, что в опасном сечении конструкции она окажется ниже средней.

В то же время брать за основу минимальный показатель слишком накладно, так как это приведет к существенному неоправданному увеличению сечения конструкции.

На фото — бетонная конструкция

Таким образом, основным параметром прочности в нашем случае является класс. Но, помимо осевого сжатия, важной характеристикой является еще и осевое растяжение. Устойчивость к осевому растяжению (если этот параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Совет!
Чем выше класс материала, тем выше его цена .
Поэтому нецелесообразно возводить конструкции с необоснованным запасом прочности.

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, выполняют расчет с определенным запасом прочности. Чтобы получить этот запас, удельное сопротивление бетона делят на определенный коэффициент, и таким образом данный показатель при расчетах уменьшают.

Определение фактического коэффициента прочности

Расчетное сопротивления бетона растяжению или сжатию можно вычислить по следующей формуле — R= Rn /g, где g – является коэффициентом надежности по прочности. Обычно данное значение составляет 1,3. Однако, чем менее однородный массив, тем этот коэффициент больше.

Правда, выполнять расчет не обязательно, так как получить нужные значения позволяет таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Алмазная резка бетонной поверхности

Совет!
В результате высокой прочности бетонных изделий, их механическая обработка вызывает определенные сложности.
Чтобы упростить эту процедуру, используют электроинструмент с алмазными насадками.
В частности, строителями зачастую выполняется резка железобетона алмазными кругами, или же алмазное бурение отверстий в бетоне, а также алмазная шлифовка бетонных поверхностей.

Определение электрического сопротивления опытного образца

Нормативное сопротивление

Ранее качеством бетона, отражавшим его противодействие различным видам нагрузок, была марка М. Затем ввели другое свойство, которое получило название класса прочности В. Определить свойства бетонных элементов и ЖБК можно по нормативам, указанным в СП.

  1. Раствор заливают в кубическую емкость высотой 15 см.
  2. Затем его уплотняют и оставляют на 28 суток до окончательного затвердения. Температура должна быть +18…+20ºС.
  3. После этого бетон испытывают путем разрушения под прессом.

Также образец проверяют на растяжение по оси. Это необходимо сделать при расчете сопротивления БК.

Таблицы содержат классы бетона и их значения по норме, поэтому испытания проводить не нужно.

Вид сопротивленияНормативные и расчетные показатели для бетона 2 группы на сжатие
класс В1015202530354045505560
сжатие по оси7,5111518,52225,529323639,543
растяжение по оси0,851,11,351,551,751,952,12,252,452,62,75

В таблице представлены значения бетона растяжению. Они необходимы при составлении проектной документации.

Показатели могут изменяться в зависимости от различных условий, которые определяются коэффициентами.

Вид сопротивленияРасчетные показатели RB и RBT 1 группы класса на сжатие
класс В1015202530354045505560
сжатие по оси RB68,511,514,51719,5222527,53033
растяжение по оси RBT0,560,750,91,051,151,31,41,51,61,71,8

Таблица показывает, что расчетные сопротивления бетона растяжению и сжатию меньше констант по норме, т. к.

  • тип воздействия на сооружение;
  • расположение центра тяжести объекта;
  • неоднородность материала.

Определяя противодействие материала нагрузкам, следует учитывать степень его возможной деформации. Для этого берут первоначальное значение этого показателя и делят на коэффициент, который состоит из степени ползучести, возможной деформации изделия в поперечнике и деформации при температурном колебании (-40…+50ºС).

Нормы показателя

До 2001 года прочностные свойства бетона характеризовались по его марке. В соответствии с этой характеристикой определена и норма сопротивления, сведенная в таблицу. Проектная документация имеет сведения о нормативном значении, характерном классу бетона. Этот показатель вычисляется по устойчивости осевому сжатию образцов материала. Для исследования изготавливают кубы с длиной ребра 15 см. Нормативное сопротивление характеризуется двумя значениями, когда образцы с максимальной прочностью подвергаются осевому сжатию или растяжению до начала разрушающих процессов. Второй показатель чаще всего не измеряют, а используется таблица соответствия коэффициента классу стройматериала:

Читать еще:  Бетонные полы с топпингом технология
Класс бетонаСопротивление (МПа)
В100,85
В7,50,70
В50,55
В3,50,39

Как взять расчетное сопротивление

Для обеспечения достаточной надежности цементных конструкций, при исполнении расчетов, применяют такие значения прочности цементного материала, каковые как правило ниже фактических показателей в конструкциях. Эти значения именуют расчетными, соответственно, они напрямую зависят от фактических либо по-другому – нормативных значений.

Нормативные характеристики

Еще совсем сравнительно не так давно (до 1984 г) единственной чёртом прочности бетона была его марка (М). Данный параметр обозначает среднюю временную устойчивость материала на сжатие. Но, с возникновением СНиП 2.03.01 были кроме этого введены классы по прочности на сжатие.

По сути, класс есть нормативным сопротивление осевому сжатию эталонных кубов размером 15х15х15 см с обеспеченностью 0,95 либо гарантированной доверительной возможностью 95%, и риском 5 процентов. Нужно заявить, что в этом случае брать среднюю крепость рискованно, поскольку имеется 50 процентов возможности того, что в страшном сечении конструкции она окажется ниже средней.

Одновременно с этим брать за базу минимальный показатель через чур накладно, поскольку это приведет к значительному неоправданному повышению сечения конструкции.

Так, основным параметром прочности в нашем случае есть класс. Но, кроме осевого сжатия, серьёзной чёртом есть еще и осевое растяжение. Устойчивость к осевому растяжению (в случае если данный параметр не контролируется) определяют в зависимости от класса B:

КлассB10B7,5B5B3,5
Устойчивость к осевому растяжению (МПа)0,850,700,550,39

Совет! Чем выше класс материала, тем выше его цена . Исходя из этого не нужно возводить конструкции с необоснованным запасом прочности.

Расчетные характеристики

Как уже было сказано выше, для обеспечения надежности конструкций, делают расчет с определенным запасом прочности. Чтобы получить данный запас, удельное сопротивление бетона делят на определенный коэффициент, и так данный показатель при расчетах уменьшают.

Расчетное сопротивления бетона растяжению либо сжатию возможно вычислить по следующей формуле — R= Rn /g, где g – есть коэффициентом надежности по прочности. В большинстве случаев данное значение образовывает 1,3. Но, чем менее однородный массив, тем данный коэффициент больше.

Действительно, делать расчет не обязательно, поскольку взять необходимые значения разрешает таблица расчетного сопротивления бетона сжатию и растяжению:

B20B15B12,5B10B7,5B5B3,5
Устойчивость к осевому сжатию (МПа)11,58,57,564,52,82,1
Устойчивость к осевому растяжению (МПа)0,900,750,660,570,480,370,26

Совет! В следствии большой прочности цементных изделий, их механическая обработка приводит к определённым сложностям. Дабы облегчить эту процедуру, применяют электроинструмент с алмазными насадками. В частности, строителями обычно выполняется резка железобетона алмазными кругами, либо же алмазное бурение отверстий в бетоне, и алмазная шлифовка цементных поверхностей.

Расчёт прочности по наклонным сечениям

I. Конструирование каркаса Назначаем расстояния между поперечными стержнями элемента.

  • — на приопорных участках 100 мм.
  • — в средней части пролёта 150

Принимаем продольную арматуру 16 мм.

Принимаем поперечную арматуру 3 мм.

  • 2. м.
  • 3. 10 3
  • 4. кН
  • 5. мм.
  • 3. мм 2
  • 4. м

При h?450 мм: s? h/2=110; и не более 150 мм.

Принимаем S=100мм [14, https://yaravtomeh.ru].

6. Проверяем прочность:

— условие выполняется Конструирование брусковой перемычки В соответствии с заданием на проектирование запроектирована брусковая перемычка марки 2ПБ19−3 с классом бетона С16/20.

По расчету принимаем рабочую продольную арматуру класса S500 Ш2 мм. в верхней части перемычки и Ш6 мм. в нижней части.

Для совместной работы продольной арматуры конструктивно принимаем поперечную арматуру класса S400 Ш3 мм. с шагом 100 мм. на приопорных участках и 150 мм. с средней части перемычки.

Для поднятия и перемещения перемычки устанавливаются 2 строповочные петли Ш6 мм. из арматуры класса S240. Петли располагаются на расстоянии 200 мм. от торцов перемычки.

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector