Doma-artek.ru

Стройка и ремонт
1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Максимальный процент армирования колонны

Процент армирования конструкций из железобетона

Арматурный каркас является необходимой частью в железобетонных конструкциях. Цель его использования — усиление и повышение прочности бетонных изделий. Арматурный каркас изготавливается из стальных прутьев или готовой металлической сетки. Необходимое количество усиления рассчитывается с учетом возможных нагрузок и воздействий на изделие. Расчетная арматура называется рабочей. При укреплении в конструктивных или технологических целях производится монтажное армирование. Чаще используются оба типа для обеспечения более равномерного распределения усилий между отдельными элементами арматурного каркаса. Арматура выдерживает нагрузку от усадки, колебаний температур и прочих воздействий.

Степень армирования

Минимальная величина коэффициента армирования (0,05%) позволяет назвать изделие железобетонным.

Если металлические элементы поместить в бетон, но величина арматурной составляющей не будет соответствовать техническим требованиям ГОСТа, то это изделие относится к бетонным наименованиям с конструкционным укреплением и не допускается к эксплуатации. Для фундамента, колонн, несущих стен и балок степень армирования рассчитывается по формуле: К= (М1÷М2)x100; где

  • М1 — вес стального каркаса;
  • М2 — масса бетонного монолита.

Для создания арматурного каркаса предпочтительно используются прутья диаметром 12-14 мм.

Площадь сечения стержней обуславливает способность поддерживающего каркаса нести и распределять нагрузки. Чем больше диаметр прутьев, тем выше процент армирования и прочность сооружения. Обычно предпочитают стержни в 12—14 мм диаметром. Удельный показатель веса арматуры уменьшается с увеличением толщины бетонного слоя.

Армирование бетона

Заливка монолитной плиты с усилительным каркасом: фото

Армирование необходимо для повышения прочностного потенциала бетона – железобетон во много раз превосходит обыкновенный аналог по прочности на излом. Повышенную надежность обеспечивает металлический каркас, сваренный из арматуры, который располагается в толще бетона. Он играет роль скелета, который многократно усиливает выносливость объекта (узнайте здесь, как происходит армирование газобетона).

В современном строительстве применение железобетона является стандартом де-факто, несмотря на то, что его цена на порядок выше обычного аналога. Однако наличие арматуры не превращают бетон в железобетон. Иногда в опалубку просто погружаются сваренный наугад каркас, который затем заливается раствором – некоторые строители по ошибке могут назвать это железобетоном, но это заявление ошибочно.

Минимальный процент усиления

Чтобы превратить обычный бетон в железобетон, недостаточно просто заложить в него металлический каркас. Существует такое понятие как минимальный процент армирования железобетонных конструкций, посредством которого определяется степень перехода одного состояния в другое. Если процент вхождения металлических элементов окажется меньше необходимого, то данное изделие относится к бетонным наименованиям.

Обратите внимание! Данный раздел основывается на пункте 5.16 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Готовый каркас и металлического прута

Если количество металлических составляющих будет меньше необходимого, то такой тип усиления считается конструкционным укреплением – при этом изделие не становится железобетоном.

Минимальный процент усиления объекта продольной арматурой рассчитывается исходя из площади сечения бетонного элемента.

  • Во внецентренно растянутых и изгибаемых объектах, в том случае если продольная сила располагается вне пределов рабочей высоты сечения, усиление должно составлять не менее 0,05% (арматура S) от площади сечения бетонного элемента;
  • Во внецентренно растянутых объектах, где продольная сила располагается между арматурами S и S”, усиление должно составлять не менее 0,06% (арматура S и S”) от площади сечения бетонного элемента;
  • Во внецентренно сжатых объектах минимальный процент вхождения металлических элементов составляет от 0,1 до 0,25% (арматура S и S”).

Обратите внимание! Если продольное усиление располагается по контуру сечения (равномерно), то площадь сечения арматуры должна составлять вдвое больше указанных величин. Это также относится к центрально-растянутым объектам.

Максимальный процент усиления

Сборка каркаса перед заливкой

В бетонных работах инструкция – «чем больше, тем лучше» – неуместна.

Чрезмерное количество металлических составляющих существенно ухудшит технические характеристики изделия.

Как и в предыдущем случае, здесь также имеются нормативы.

  • Независимо от класса бетона и усилительных элементов, наибольший процент вхождения арматуры в сечение изделия не должен превышать 5% в случае с колоннами и 4% во всех остальных случаях. При этом бетонный раствор должен эффективно просачиваться между деталями усилительного каркаса;

Обратите внимание! В обоих случаях, в качестве усилительных элементов подразумевается горячекатаная сталь для армирования железобетонных конструкций.

Защитный слой бетона

Схема Ж/б в разрезе

Усилительный каркас должен покрываться защитным слоем бетона, который обеспечивает совместную работу бетона и металлического скелета. Также он защищает металл от коррозии и воздействия окружающей среды (см.также статью «Защита бетона от влаги: способы и применяемые материалы»).

Толщина слоя над металлическим каркасом составляющими должна составлять.

В стенках и плитах (толщиной мм) не менее:

  • Свыше 100 мм – 15 мм;
  • До 100 мм и включительно – 10 мм;
Читать еще:  Как работает арматура в бетоне?

В ребрах и балках:

  • Свыше 250 мм – 20 мм;
  • До 250 и включительно – 15 мм;

В фундаментных балках:

  • Не менее 30 мм;
  • Не менее 20 мм;

Обратите внимание! Если защитный слой будет иметь большее значение, то для дополнительного укрепления используется проволока для армирования железобетонных конструкций, которая перекроет излишек.

Укрепление лестничного пролета

  • Монолитных с цементной подушкой – 35 мм;
  • Сборных – 30 мм
  • Монолитных без цементной подушки – 70 мм;

Обратите внимание! Данный раздел составлен в соответствии с пунктом 5.5 СНиП 2.03.01-84 “Бетонные и железобетонные конструкции”

Также следует отметить, что алмазное бурение отверстий в бетоне или резка железобетона алмазными кругами должна учитывать расположение и структуру усилительного каркаса. Отделение частей или сквозные отверстия могут существенно снизить потенциал прочности объекта. Если же речь идет о полном демонтаже объекта, то данное обстоятельство учитывать нет необходимости.

Соблюдение норм и стандартов будет надежной гарантией долговечности и надежности железобетонных конструкций. Более подробную информацию по данной теме вы можете получить посредством просмотра видео в этой статье (узнайте также как осуществляется прогрев бетона сварочным аппаратом).

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Какова величина защитного слоя бетона

Для предотвращения коррозионного разрушения силового каркаса следует выдерживать фиксированное расстояние от стальной решетки до поверхности бетонного массива. Этот интервал называется защитным слоем.

Его величина для несущих стен и железобетонных панелей составляет:

  • 1,5 см – для плит толщиной более 10 см;
  • 1 см – при толщине бетонных стен менее 10 см.

Размер защитного слоя для ребер усиления и ригелей немного выше:

  • 2 см – при толщине бетонного массива более 25 см;
  • 1,5 см – при толщине бетона меньше указанного значения.

Важно соблюдать защитный слой для опорных колонн на уровне 2 см и выше, а также выдерживать фиксированный интервал от арматуры до поверхности бетона для фундаментных балок на уровне 3 см и более.

Величина защитного слоя различается для различных видов фундаментных оснований и составляет:

  • 3 см – для сборных фундаментных конструкций из сборного железобетона;
  • 3,5 см – для монолитных основ, выполненных без цементной подушки;
  • 7 см – для цельных фундаментов, не имеющих демпфирующей подушки.

Строительные нормы и правила регламентируют величину защитного слоя для различных видов строительных конструкций.

Коэффициент армирования – предельное значение для монолитных фундаментов

Желая обеспечить повышенный запас прочности конструкций из железобетона, нецелесообразно превышать максимальный процент армирования.

Нецелесообразно превышать максимальный процент армирования, чтобы обеспечить повышенный запас прочности конструкций

Это приведет к негативным последствиям:

  • ухудшению рабочих показателей конструкции;
  • существенному увеличению веса изделий из железобетона.

Государственный стандарт регламентирует предельную величину уровня армирования, составляющую пять процентов. При изготовлении усиленных конструкций из бетона важно обеспечить проникновение бетона в глубь арматурного каркаса и не допустить появления воздушных полостей внутри бетона. Для армирования следует использовать горячекатаный пруток, обладающий повышенной прочностью.

Разновидности бетонных колонн

В первую очередь конструкции отличаются по форме, то есть по сечению опоры. Обычно возводятся квадратные, прямоугольные и круглые элементы. Также колонны отличаются по технологии их производства и могут быть:

  • Сборными. Такие конструкции сначала изготавливаются на заводе, а потом перевозятся на строительную площадку. Они отличаются удобным и быстрым монтажом.
  • Монолитными. Заливка бетона осуществляется непосредственно на стройплощадке, когда раствор заливают в подготовленные формы (опалубку) и усиливают арматурой.

Второй вариант пользуется большей популярностью по нескольким причинам. Во-первых, намного удобнее осуществлять контроль качества проводимых работ. Во-вторых, можно быть уверенным в том, что в растворе содержится портландцемент нужной марки, а не более дешевый. Но есть и большой минус – требуется тратить больше времени и сил на такое возведение. К тому же монолитные колонны обойдутся намного дороже. Дополнительно необходимо придерживаться всем этапам возведения конструкций, следить за температурным режимом и техникой введения бетонной смеси.

Технология армирования

Глубина скважин, в которые укладывается бетон, в индивидуальном строительстве редко превышает 2,5 – 4 м. Во избежание осыпания грунта в забой при армировании, бетонировании используется опалубка. Наиболее популярны цилиндры из рубероида, полиэтиленовые, асбоцементные трубы. Армирование буронабивных свай производится в несъемную опалубку, что позволяет снизить защитный слой бетона. Кроме того, полимерные трубы решают несколько задач:

  • гидроизоляция бетонной конструкции;
  • снижение выдергивающих усилий (грунтам сложно зацепить гладкий материал), но в тоже время это снижает несущую способность сваи, т.к. уменьшается боковая сила трения;
  • предотвращение обваливания породы на забой.
Читать еще:  Величина защитного слоя бетона для арматуры

При монтаже свайного фундамента необходимо руководствоваться нормативными документами:

  • СП 24.13330 – фундаменты свайные;
  • СП 28.13330 – антикоррозионная защита;
  • СП 45.13330 – фундаменты, основания, эксплуатирующиеся в земле;
  • Ведомственные и отраслевые руководства по проектированию;
  • планы ППР, технологические карты (типовые) на производство работ.

В зависимости от размера скважины, вертикальных нагрузок, крутящего момента процент армирования составляет 0,4 – 3%. Например, при выборе бетона В25 для свай диаметром 30 см потребуется:

  • 3% армирование при расчетном моменте в пределах 70 тс*м;
  • 2% при 60 тс*м;
  • 1% при 30 тс*м;
  • 0,4% при 15 тс*м.

При увеличении диаметра скважины до 40 см (обычно максимальный размер оснастки ручного инструмента или мотобура) этот же процент армирования допускается при моментах, увеличенных в 1,2 раза.

Схемы армирования

Величина и вид нагрузок свайного фундамента существенно влияет на расход арматуры. Например, если сваи диаметром 30 см испытывают исключительно вертикальное вдавливание, опираясь на пласт с высокой несущей способностью, ствол может не армироваться, прочность бетонного стержня достаточна для обеспечения устойчивости конструкции.

Головная часть армируется всегда, чтобы вертикальные прутки, изогнутые под прямым углом, позже были связаны с каркасом монолитного ростверка или плиты (плитный ростверк). Причем, конструкция утапливается в бетон уже после укладки смеси. Характеристики каркаса для головной части свайного фундамента следующие:

  • длина стержней – 1 – 1,5 м;
  • количество прутков – 4 – 7 штук;
  • спираль, хомуты – не обязательны;
  • выпуск для ростверка – 50 см для свай диаметром 30 – 40 см;

Если в схеме при расчетах появляется горизонтальные нагрузки с неизбежными для них крутящими моментами, каркас должен погружаться на всю глубину скважины, в схему армирования свайного фундамента добавляются следующие элементы:

  • хомуты – квадрата (обычно для 30-40 см диаметра), кольца (большие диаметры);
  • пластиковые фиксаторы (прокладки) – различной формы, изготавливаются промышленностью.

Фиксатор для арматуры

Вязка каркаса для сваи.

Хомутами каркасам придается необходимая пространственная геометрия, фиксаторами обеспечивается защитный бетонный слой, чтобы предотвратить разрушение металла от коррозии. Шаг хомутов составляет 30 – 70 см, увеличивается в средней части, снижается на забое, устье. Пример простейшего расчета минимального процента армирования выглядит следующим образом:

  • площадь сечения сваи 40 см диаметра – 3,14 х R2 = 3,14 х 202 см = 1256 см2
  • минимально допустимый процент – 0,4% х 1256 см2 = 5 см2
  • максимально допустимый процент – 3% х 1256 см2 = 37, 68 см2
  • сечение арматуры из таблиц ГОСТ – 2,01 см2 для 16 мм прутка, 1,54 см2 для 14 мм стержня, 1,13 см2 для 12 мм арматуры.

При минимально возможном коэффициенте для каждой свае потребуется 4 стержня 14 мм диаметра или 5 стержней 15 мм диаметра. Для максимально допустимого потребуется 18 прутков 16 мм, 24 арматуры 14 мм либо 33 стержня 12 мм.

На практике в частном домостроении обычно используют 4-6 стержней, 4 это минимальное число прутков. Защитный слой обеспечивается креплением на арматуру специальных пластиковых прокладок, отделяющих металл от опалубки.

Выбор арматуры

Согласно СП 63.13330 для свайного фундамента применяется арматура, соответствующая ГОСТ 5781 классов:

  • А3 – маркируется А400 либо А500, имеет рифленую поверхность, повышенное сцепление с бетоном, предназначена для вертикальных стержней каркаса;
  • А1 – гладкая, используется в хомутах, обозначается А240.

Длину стержней вычисляют сложением глубины скважины, высоты ростверка над землей, 50 см, необходимых для заделки в ростверк изогнутой части. Длину хомутов определяют, исходя из конфигурации (кольцо, квадрат).

Обычная арматура изготавливается из сталей 35ГС, 25Г2С, 32Г2Рпс, она для сварки не предназначена, связывается проволокой. Специальная арматура имеет в обозначении букву С (например А400С), создается из легированных сталей, не изменяющих свойств в сварочных стыках.

Каждая заглубленная в землю конструкция свайного фундамента диаметром 40 см имеет конкретную несущую способность, зависящую от сопротивления грунта под подошвой и на всем ее протяжении (боковое трение).

Поэтому застройщику остается подсчитать сборную нагрузку здания (вес всех элементов силового каркаса, снеговые/ветровые нагрузки из таблиц СП, мебель, прочая эксплуатационная нагрузка), разделить ее на несущую способность сваи, чтобы получить необходимое количество скважин свайного фундамента.

Учитывая минимальную длину свай, диаметр отверстий в земле (обычно 40 см) в индивидуальном строительстве, рекомендуется обеспечить двукратный прочностной запас. Например, ввиду высокой стоимости геологических исследований, шурф в пятне застройки выкапывается самим застройщиком, состав почвы определяется на глаз. Чтобы компенсировать погрешность, недостаточную длину, малый диаметр (30-40 см), специалисты рекомендуют:

  • умножать вес стен, перекрытий на 2, это примерно равно массе снежного покрова, жильцов, мебели, оборудования, ветровых нагрузок;
  • для СИП панелей, каркасных конструкций лучше использовать коэффициент 3, так как они очень легкие.

Итоговую цифру сборных нагрузок дополнительно умножают на 1,3 для гарантированного прочностного запаса. На практике для легких одноэтажных построек расчеты показывают, что одна – две 30 см сваи, имеющие длину 2,5 м, полностью выдерживают вес коттеджа при условии гарантированного достижения несущего пласта.

Изготовление каркасов

Технология армирования свайного фундамента секретов практически не имеет, нужно просто соблюдать последовательность действий:

  • изгибание хомутов – диаметр колец или квадратов должен быть на 4 – 8 см меньше внутреннего диаметра опалубки, чтобы обеспечивать 2 – 4 см защитный слой, соответственно;
  • крой вертикальных стержней – длину выбирают в зависимости от высоты ростверка, глубины забоя, добавляя 50 см на изгиб для связки с каркасом ростверка;
  • вязка – крепление проволокой прутков к хомутам через 30 – 70 см.

Приспособление для вязки арматуры.

После чего, остается надеть на хомуты несколько пластмассовых прокладок по периметру, опустить каркас на всю длину внутрь опалубки, уложить бетон.

Данные рекомендации пригодятся индивидуальным застройщикам при самостоятельном армировании буронабивных свай. Позволят избежать ошибок, заложить достаточный прочностной запас для максимально возможного эксплуатационного ресурса здания.

Совет! Если вам нужны строители для возведения фундамента, есть очень удобный сервис по подбору спецов от PROFI.RU. Просто заполните детали заказа, мастера сами откликнутся и вы сможете выбрать с кем сотрудничать. У каждого специалиста в системе есть рейтинг, отзывы и примеры работ, что поможет с выбором. Похоже на мини тендер. Размещение заявки БЕСПЛАТНО и ни к чему не обязывает. Работает почти во всех городах России.

Если вы являетесь мастером, то перейдите по этой ссылке, зарегистрируйтесь в системе и сможете принимать заказы.

Расчет и проверка армирования колонны.

Выполним расчет с подборкой и проверкой армирования.

Рисунок 2. Параметры конструктивного расчета.

На рисунке 3 показаны результаты проверки заданного армирования.

Процент использования прочности сечения в нашем примере превысил 100%, что говорит о недостаточном количестве установленной арматуры.

Рисунок 3. Анализ проверки заданного армирования.

На рисунке 4 показаны результаты подбора продольной арматуры.

Для более детального армирования воспользуемся опцией локальные результаты (см. рисунок 5 зона 1).

Рисунок 4. Анализ подбора армирования. Продольная арматура.

Рисунок 5. Анализ подбора армирования. Локальные результаты.

Как видно (рисунок 5, зона 2), в ходе подбора арматуры, для всех стержней в рамках созданных логических групп подобрано одинаковое армирование.

Во вкладке режим просмотра (рисунок 5, зона 3) выберем положение нейтральной оси.

В результате на экране отображается эпюра деформаций и усилия в арматурных стержнях (рисунок 6).

Рисунок 6. Анализ подбора армирования. Продольная арматура.

В редакторе конструирования выберем вкладку поверхность несущей способности.

Выбор исходных данных для расчета показан на рисунке 7.

После этого необходимо выбрать на экране стержневой элемент, для сечения которого будет построена поверхность несущей способности.

Результаты расчета представлены на рисунке 8.

Рисунок 7. Поверхность несущей способности. Исходные данные для расчета.

Рисунок 8. Поверхность несущей способности. Результаты расчета.

Поверхность несущей способности позволяет оценивать прочность элемента с подобранной арматурой по 1-ой и 2-ой группе предельных состояний на действие усилий (продольная сила и изгибающие момент) в различных комбинациях.

При изменении усилий программа перестраивает огибающие эпюры (плоские – рисунок 8, зона 3 и объемные – рисунок 8, зона 2).

Оценка прочности определяется:

  • визуально, красная точка должна находиться внутри огибающей области;
  • аналитически, предоставляется информация в долях по использованию прочности по каждому силовому фактору (рисунок 8 зона 1).

Таким образом, программный комплекс ЛИРА 10.8 позволяет не только выполнить подбор и проверку армирования стержневых элементов, но и благодаря новым инструментам (в режиме локальных результатов просмотр напряжений и деформации, а также поверхность несущей способности) выполнить более детальный расчет и анализ работы конструкции.

Выполнить расчет железобетонных колонн можно в демоверсии ПК ЛИРА 10.8

голоса
Рейтинг статьи
Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector